
Arguing About Task Reallocation Using
Ontological Information in Multi-Agent Systems

Alison R. Panisson, Artur Freitas, Daniela Schmidt,
Lucas Hilgert, Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini

Pontifical Catholic University of Rio Grande do Sul – PUCRS
Postgraduate Programme in Computer Science – School of Informatics (FACIN)

Porto Alegre – RS – Brazil
{alison.panisson,artur.freitas,daniela.schimidt}@acad.pucrs.br,

{lucas.hilgert,felipe.meneguzzi,renata.vieira,rafael.bordini}@pucrs.br

Abstract. Argumentation-based dialogue is a rich form of agent inter-
action, which allows agents to make informed decisions using the addi-
tional information that is exchanged as arguments during the dialogue.
In this paper, we show how agents can use domain specific knowledge
provided by access to ontological information in the process of partici-
pating in argumentation-base dialogues. We also show how information
obtained in a dialogue can be used by the agents to argue in subsequent
dialogues. As an example scenario, we use an assisted living application
where agents argue about task reallocation. We then define an agent
decision-making process and a protocol; the decision-making and the
protocol for argumentation-based dialogues are defined for cooperative
agents in our scenario (i.e., task reallocation).

Keywords: Argumentation-based Dialogues, Task Reallocation, Multi-
agent Systems

1 Introduction

Argumentation has received significant interest in the Multi-Agent System
(MAS) community in recent years. The two main lines of research in the multi-
agent community regarding argumentation are [18]: i) argumentation focused on
reasoning (nonmonotonic reasoning) over incomplete, conflicting, or uncertain
information, where agents construct arguments for and against certain conclu-
sions (beliefs, goals, etc.) of their own; and ii) argumentation focused on com-
munication/interaction between agents that allows the exchange of arguments
to justify a stance and to provide reasons that defend claims made by individual
participants.

The main claim appearing in the literature about the benefits of an
argumentation-based approach to communication is the fact that this type of in-
teraction allows agents to reach agreements in situations where other approaches
would not (for example, in negotiation, where argumentation is compared to



2 Panisson et al.

game-theoretic and heuristic-based approaches [28]). Such benefits are the con-
sequence of the exchange of additional information (arguments) which allow
agents to make more informed decisions and comparisons.

In this work, we explore argumentation in the communication aspect of its
uses in MAS, where we model a decision-making process and an argumentation-
based dialogue protocol for the reallocation of tasks between agents. In our ap-
proach, agents use information provided by an ontology that contains domain-
specific information about the tasks. This approach is interesting because it
allows the modularisation of applications, separating the domain-specific knowl-
edge, which will be common to all agents in a given application.

Ontologies empower the execution of semantic reasoners, such as Pellet [32],
which provide functionalities such as consistency checking, concept satisfiability,
classification and realisation. Ontologies also allow people and software agents
to share a common understanding of the structure of the available information
and the reuse of domain knowledge.

The contribution of this paper is threefold. First, we define an ontology of
tasks (the domain-specific knowledge in our case study) and agents query this
information from within a MAS that runs distributed over a network. Second,
we define a decision-making process using the information obtained from the
ontology. An agent makes its decisions based on ontology queries and the results
of the dialogues in which it participates; although in our framework dialogues
with multiple agents is possible, in this work agents always engage in dialogues
in pairs. Third, we define a protocol for argumentation-based dialogues between
cooperative agents for task reallocation, where agents discuss over an assertion
in order to decide whether it can be accepted by both, by none, or whether the
agents have different preferences and therefore cannot reach an agreement about
that assertion. The results of such dialogues are used in the decision-making
processes.

The remainder of this paper is organised as follows. In the next section, we
discuss briefly some related work. Then we describe the approach used to access
ontological information, the scenario used to exemplify the remainder of the
paper and the domain-specific ontology. Next, we describe a decision-making
process and an argumentation-based dialogue protocol which are used by the
agents in our domain. Then we exemplify our approach by discussing a case
study. In the final section of this paper, we make some final remarks and discuss
possible directions for future work.

2 Related Work

In argumentation-based dialogues, agents use speech-acts to exchange argu-
ments. Speech acts for this purpose have long been discussed in the relevant
literature [1, 25, 26]. Some of these speech-acts have actually been formalised in
agent-oriented programming languages, for example in our previous work [23].
In that work, the changes by sending and receiving speech acts reflect in the
MAS as whole, where several dialogues can be occurring simultaneously among



Arguing About Task Reallocation in Multi-Agent Systems 3

different sets of agents. Our work uses a subset of the performatives found in
the literature. We followed the literature using a structure that maintains the
public knowledge that the agents introduce in the dialogue — the commitment
stores [26]. Further, we define a protocol using the definition of “moves”1, and
agents take turns in making such moves, as in [14].

Some protocols for argumentation-based dialogues can be found in the liter-
ature. In [2], the authors present a protocol called PARMA which defines the
rules for argumentation-based persuasive dialogue over actions, where the partic-
ipants rationally propose, attack, and defend an action or course of action. In [4]
a protocol for conflict resolution between agents is proposed; in that protocol,
the generation and evolution of arguments apply assumption-based argumenta-
tion [10]. Black et al. [6] propose a dialogue-game inquiry protocol that allows
two agents to share knowledge in order to construct an argument for a specific
claim. In [8], a protocol is introduced in a declarative way, determining which
speech acts are legal in a particular state, and this model is used to analyse a
formal disputation. In our work, we define a protocol for argumentation-based
dialogues between cooperative agents, where the agents discuss about a certain
topic (the first assertion made in the dialogue). The dialogue ends when the
agents agree about the first assertion, agree about the complement of the first
assertion, or otherwise the dialogue eventually ends in disagreement. We also use
declarative rules to define which moves are allowed after one another. This pro-
tocol is used in a decision-making process that obtains the required knowledge
from a domain ontology.

Approaches to integrate ontology information with agent-oriented program-
ming languages can be found in work such as AgentSpeak-DL [20] which extends
agents’ belief base with description logic; JASDL [16] which is an AgentSpeak-
DL implementation that extended Jason to provide agents with ontology ma-
nipulation capabilities using the OWL API; CooL-AgentSpeak [17] which is an
extension of AgentSpeak-DL with plan exchange and ontology services. The
CooL-AgentSpeak implementation uses a CArtAgO artifact functioning as an
ontology repository tool which stores a possibly dynamic set of ontologies and
offers services such as ontology matching/alignment. In our work too a CArtAgO
artifact is used to implement an interface between ontologies and MAS. Using
this approach, the agents can share ontologies that are available to them, while
in CooL-AgentSpeak agents do not share knowledge from their ontologies. This
is an important aspect of our work, where we intend to use the ontology as a
knowledge repository from which agents can query specific domain knowledge
that is common to all of them.

1 The name “moves” is from game-theoretic approaches to agent argumentation where
a dialogue is treated as an adversarial game. In that context, each move corresponds
to a communicative action made by an agent [18]



4 Panisson et al.

3 Accessing Ontological Information

To provide access to ontological information (i.e., domain-specific knowledge de-
veloped by a knowledge engineer) in a MAS, we developed a CArtAgO [30]
artifact. CArTAgO is a platform that provides MAS with support to the notion
of artifacts. Artifacts are function-oriented computational abstractions which
provide services that agents can exploit to support their activities [29]. An ar-
tifact makes its functionalities available and exploitable by agents through a
set of operations and observable properties. Operations represent computational
processes executed inside artifacts, which can be triggered by agents or other
artifacts. Observable properties are artifact attributes that are directly mapped
into the belief base of the agents that observe (i.e., focus on) an artifact.

Our artifact uses the OWL API, which is an open source Java API [13],
for creating, querying, manipulating, and serialising ontologies coded in OWL
(Web Ontology Language). These functionalities are made available to the agents
through a set of operations such as load the ontology, add instances and add
concepts, for example. In our work, we make use the following operations in
particular:

– isInstanceOf (instance, concept)
- checks whether the instance belongs to the given concept, returning a
boolean value.

– getInstances (instance, property)
- returns the instances (Set<OWLNamedIndividual>) that are targeted by
the given instance and property.

As a design and implementation decision, each instance of the proposed
artifact can load and encapsulate exactly one OWL ontology. However, each
workspace can have any number of instances of this artifact, where each in-
stance makes reference to an ontology, and the agents in the same workspace of
the artifacts can observe and manipulate any number of such artifacts. Thus,
each MAS using this type of artifact can handle multiple ontologies, all shared by
the agents that enter the workspace where those artifact instances are located.

Using an artifact to access information from ontologies is an alternative to
the approach of representing all the knowledge in platform-specific mechanisms
such as the belief base of an agent, for example. However, agents can still use
their regular knowledge representation approach simultaneously with the infor-
mation provided by the ontology (or completely replace the native approach
to knowledge representation). For example, using this approach to access onto-
logical information, if the agents interact with an ontology that represent their
plans, such as the one presented in [11], they could be aware and reason about
the issues represented in the form of that shared conceptualisation.

4 Scenario and Ontology Description

The scenario used here is the development of a complex software system, in
particular an assisted-living application to provide functionalities such as ac-



Arguing About Task Reallocation in Multi-Agent Systems 5

tivity recognition and task reallocation among agents representing human users
through the use of planning, agent and semantic technologies. More specifically,
this multi-agent application is designed to provide the following functionalities
for its users:

– allocate tasks and commitments considering the context of patient care;
– detect if the person responsible for each of the activities of the elderly patient

is following their scheduled appointments/commitments;
– detect problems that may prevent the person in charge to attend to their

obligations;
– reallocate tasks among users whenever required/possible (using an

argumentation-based approach);
– send reminders for users to monitor the patient’s schedule.

Among these characteristics of the application, we focus on the task reallo-
cation. In particular, we demonstrate agents using information provided by an
ontology to engage in argumentation-based dialogues about task reallocation.
We only briefly explain the remainder of the application to provide an overall
understanding of the application as a whole. Considering this scenario, we cre-
ated an ontology to represent collaborative tasks that correspond to caring for
an elderly person and the interactions with the members of the group of people
who care for the elderly person (the members of the extended family of that
person plus some professional carers). The ontology allows agents to reason and
query information about the typical tasks and commitments of that group of
people.

4.1 Task Ontology

We use a task ontology to represent task-related knowledge, such as location,
temporal characteristics, and execution properties. It gives the information of
who is involved in each type of task execution, where the tasks normally take
place, when they happen, what changes in the environment they cause, what
is required for their execution, and so on. Agents can use this information to
make decisions at various moments, for example during the execution of plans
to achieve some goal and in the reallocation of tasks among agents. Logical
rules and semantic reasoners may be applied over the ontology to infer new
knowledge about tasks. Such knowledge may be required by agent programmers
to implement task reasoning mechanisms, such as techniques for task recognition,
allocation, and negotiation.

Figure 1 shows the main concepts, properties, and examples of instances in
our task ontology. Its main concepts are Task, TaskPurpose, Person, Location,
Object, and TimeInterval. A Task may contain restrictions based on the locations
where it can happen, as represented in the Location concept (e.g., InternalLo-
cation and ExternalLocation). The Person concept includes information that a
Task might be assigned to any number of persons that will execute it or partic-
ipate in its execution. Persons can be subdivided according to the necessity to



6 Panisson et al.

specify Task restrictions, e.g. Adult is a subclass of Person, which can be used
to specify tasks that only adults can execute. The Object concept represents the
objects involved in the task execution; TaskPurpose represents the task classifi-
cation according to their speciality (e.g., entertainment, personal hygiene, etc.);
and TimeInterval helps modelling tasks that have particular temporal charac-
teristics, such as a specific time when they might happend.

Task Location

ObjectTimeInterval

TaskPurpose

Person

carer-of

is-at

is
-a
t

occurs-task

has-object

is
-s
ch
ed
ul
e-
to

has-task-
purpose

executed-by

ca
n-
ex
ec
ut
e-
ta
sk

ha
s-
su
bt
as
k

park

hospital
.
.
.

john
carlos

.

.

going-out
drive

.

.

.

day-carer

cooking
fridge

TV
.
.

Concept

Property

Instance

Legend:

Fig. 1. Overview of the Task Ontology.

The Task concept is specialised in various dimensions to address the task
representation needs for collaborative groups. For example, in terms of its com-
plexity, a Task may be classified as SimpleTask or CompositeTask (if it is divided
into other tasks through the has-subtask property). Also, a Task can be real-
locatable between members of the group and/or temporally, as addressed by
the ReallocatableTask concept, that considers the ReallocatableResponsible and
ReallocatableTime subconcepts. In our approach, a Task can be reallocated in
two occasions: (i) when a person cannot execute it at the scheduled time — in
this case, a ReallocatableTime task will be reallocated to a different time, but
it will be assigned to the same person; and (ii) when a ReallocatableResponsible
task cannot be reassigned to the same person at a different time — in this case,
the Task has a property called can-be-reallocated-to to identify the persons who
can execute it. Information about Persons may be used to define characteristics
that people must have in order to perform certain tasks, such as AdultTask, that
represents tasks that only adults can perform (e.g., tasks that involve driving a
car). Also, when a Task is assigned to a Person and assisted by another, it is
classified as an AssistedTask.

In OWL, a class C can be declared with certain conditions (i.e., every instance
of C has to satisfy those restrictions, and/or every instance that satisfies those



Arguing About Task Reallocation in Multi-Agent Systems 7

restrictions can be inferred as belonging to C). OWL class restrictions [3] can be
defined by elements such as cardinality and logic restrictions (e.g., the universal
and existential quantifiers). In our ontology, the concepts were defined based on
a series of restrictions and other logical characteristics, e.g. the CompositeTask
concept is equivalent to a task that has sub-tasks, and a SimpleTask is equivalent
to a task (a subclass of Task) that is not a CompositeTask (i.e., it has no sub-
tasks). These restrictions allow task recognition to be conducted by means of
the classification capability by semantic reasoners. These concept definitions use
the existential quantifier and negation, as follows:

CompositeTask ≡ Task u ∃has-subtask.Task
SimpleTask ≡ Task u ¬CompositeTask

5 Arguing About Task Reallocation

Using the information provided by the ontology artifact in their decision-making
process, the agents decide if a particular task can be transferred to another time
slot, as well as which persons (members of the group using the application) can
execute this particular task if it cannot be postponed. In the latter case, it is
argued with the group members the reallocation of the task to one of them. As
previously described, the scenario corresponds to a MAS designed to monitor
and support the execution of tasks in an assisted living context. The agents
have the goal of helping the users to conclude the tasks for which they are
responsible. For example, if an agent detects a failure that could negatively
impact the completion of a task, it can try to find an alternative manner to
conclude that task (transferring temporally or transferring to another person
who would be able to execute it to successfully). The knowledge of this domain
is described in an ontology designed by a knowledge engineer (in our example,
the task ontology), and can be reused in other applications, or in some cases it is
even possible that the application (i.e, the MAS) can be used in another domain
by simply changing the domain ontology.

5.1 Speech Acts for Argumentation-based Communication

In our work, agents argue about task reallocation using a subset of the speech-
acts found in the literature on argumentation-based dialogue [1, 25, 26]. The
speech-acts used and the informal meaning are:

– assert: an agent that performs an assert utterance declares, to all participants
of the dialogue, that it is committed to defending this claim. The receivers
of the message become aware of this commitment.

– accept: an agent that performs an accept utterance declares, to all partici-
pants of the dialogue, that it accepts the previous claim of another agent.
The receivers of the message become aware of this acceptance.

– question: an agent that performs a question utterance desires to know the
reasons for a previous claim of another agent. The receiver of the message is
committed to defending its claim, and provides the support set for it.



8 Panisson et al.

– justify: the justify message is similar to the assert message, and it is the re-
sponse to the question message previously uttered, where the agent provides
the support to its previously claim uttered.

– retract : the agent declares, to all participants of the dialogue, that it is
no longer committed to defending its previous claim. The receivers of the
message become aware of this fact.

The formal semantics of some these speech acts/performatives for agents
based on the BDI architecture (such as Jason [7] agents) is found in our work [23]
which specifies the exact effects of sending and receiving such speech acts in the
agent’s mental state, as well as in the MAS as a whole. We use that semantics in
our work so we refer the reader to [23] for details of the semantics formalisation.

In addition to the speech acts presented above, the agents exchange mes-
sages to start and to end the dialogues. We do not present that simple message
exchange, so we assume that any protocol can be used to start a dialogue, and
we further assume that the dialogue ends when the agents reach an agreement
or no agent can execute further moves.

5.2 Rules to Update the Commitment Store

The Commitment Store (CS) is a data structure accessible to all agents in a
dialogue; it contains, for each agent, all the commitments made by that agent
during the dialogue (the CS is sometimes also called dialogue obligation store [19]
and dialogue store [31]). The CS of an agent is simply a subset of its knowledge
base, and the union of the CSs can be viewed as the state of the dialogue at a
given time [26].

In the course of the dialogue, the agents use rules that define how the CSs are
updated. Only the owner agent can update the information in its commitment
store (the other agents can only read its contents). These rules are implicit in
the semantic definition used in this work and presented in [23], and can be
summarised as follows:

– assert : the agent’s CS is updated with the content asserted (assume the
content is a formula p): CS = CS ∪ {p};

– accept : the agent’s CS is updated with the accepted content p: CS = CS ∪
{p};

– question: has no effects over the CS;
– justify : the agent’s CS is updated with the justification content (a support

set of rules and facts S): CS = CS ∪ S;
– retract : the agent’s CS is updated removing the retracted content p: CS =

CS \ {p}.

5.3 Argument Generation and Evolution

We assume that our agents have an internal rule-based argumentation mech-
anism capable of generating and evolving argument positions. We have imple-
mented an argumentation-based reasoning mechanism [24] in Jason Platform [7]



Arguing About Task Reallocation in Multi-Agent Systems 9

adapting d-Prolog [21] (an implementation of defeasible logic formalism [22]).
We consider our previous work as reasoning mechanism, where we present the
basic of this work to the understanding of the remaining of the document and
we refer to [24] for the full work. Although we use our previous work as rea-
soning mechanism, other work in literature could be used, as the approach of
Berariu [5], which implements a decoupled module in Jason Platform based in
the work of Prakken [27].

In our approach, when an agent needs an argument (facts and rules used in
the derivation of a content), this information is accessible through queries in its
belief base, returned as a list unified in the parameter named Arg. We store each
rule and fact, used in the derivation, using the internal action2 .concat (which
concatenates a list with the new element – a rule or fact). Thus, depending on the
strategy of the agent, it can verify if it has a strict or defeasible argument, using
strict_der(Arg,Content) and def_der(Arg,Content), or if this distinction
is not necessary, the agent can use the predicate argument(Content,Arg).

argument(Content,Arg):- strict_der(Arg,Content)

| def_der(Arg,Content).

This implementation has a well-defined semantics called defeasible seman-
tics [12], which defines the acceptability of the arguments. This semantics is
unique3 and it is compared with the grounded semantics of Dung [9] in [12].

Regarding our scenario, we will present a simple argumentation-based rea-
soning example, which the agent uses to decide about to not execute a task. We
will suppose that an agent, named ag, is committed to execute a task, named
t1, but by any reason he cannot execute this task. The agent ag believes that
the task t1 can be transferred, so it believes that the task t1 does not need to
be executed by the agent ag.

defeasible_rule(¬execute(ag,t1),can_be_transferred(t1)).
can_be_transferred(t1).

The plan to cancel the agent commitment to execute the task t1 has the
following format (in Jason platform):

+!cancel_task(t1): argument(¬execute(ag,t1),Arg))
<- cancel_task(t1,Arg).

Before the agent to cancel its commitment with the task t1, it is informed
that the patient (centralized person of the application, which the other members
take care) needs that the task t1 to be executed by some reason. The reason is
dependent of the task, in this case we will consider that the patient has pain
and the task is take the patient to the physiotherapy.

2 All internal actions available in Jason Platform can be found in [7].
3 It generates only one set of acceptable arguments.



10 Panisson et al.

strict_rule(execute(ag,t1),has_pain(patient)).

has_pain(patient).

The new information changes the conclusion of that the task does not need
to be executed by the agent ag, and so the above plan no longer applies.

5.4 Decision-Making for Task Reallocation Using Ontological
Information

Decision-making can be seen as a process whereby an agent looks for the in-
formation available to it in order to decide which course of action to take [15].
In this section, we describe our agent decision-making process for task realloca-
tion, which uses information provided by the ontology described earlier in this
paper. It is important to note that the tasks are assigned to users and not to
agents, therefore the agents argue about the reallocation to their users, using
the information available to them.

The process of task reallocation starts when the system detects that a user
could not execute a task because of a particular problem (e.g., the user is late,
or the system recognises that the user cannot execute the task because another
more important task/commitment was created with conflicting times, etc.). Then
the system generates an event which is treated by the agent responsible to help
that particular user. The decision-making process proceeds as follows:

– Step 1: The user agent checks if the task is temporally reallocatable (this
is domain-specific knowledge and is provided by the ontology, accessed by
the agent using the artifact). If that is the case, the agent tries to reallocate
the task to another time slot, and the decision-making process goes to Step
2. In case the task is not temporally reallocatable, the user agent tries to
reallocate it to another user of the application — the process goes to Step
4.

– Step 2: The user agent starts a dialogue with the agents representing those
involved in the task 4, suggesting that the task be transferred to another
time slot (following the protocol for argumentation-based dialogue that we
introduce in the next section). There are three possible results to this dia-
logue: (i) the dialogue ends with agreement about transferring the task to
another time slot — the decision-making process goes to Step 3; (ii) the di-
alogue ends with agreement about not transferring the task to another time
slot; and (iii) the agents cannot reach an agreement about postponing the
task. In both the last two cases the decision-making process goes to Step 4.

– Step 3: The user agent informs the user that the task has been transferred
to another time slot. Further, the elder user (or other participants of the
dialogue) are also informed about the reallocation. The process ends.

4 In our domain, generally, the task has two people involved, the person responsible
for the task (who will usually try to reallocate it if needed) and the elderly family
member who requires constant care.



Arguing About Task Reallocation in Multi-Agent Systems 11

– Step 4: The user agent checks which other members of the group of users
are allowed to execute the task (this information is also provided by the
ontology). If the list of members that can execute the task is empty, then
the decision-making process goes to Step 7; otherwise, it goes to Step 5.

– Step 5: The user agent selects one member of the list of members who
can execute the task and starts a dialogue with the agent of that user,
suggesting that the selected member executes the task instead (following our
argumentation-based dialogue protocol). As before, there are three possible
results to this dialogue: (i) the dialogue ends with agreement about the
selected member executing the task — the process goes to Step 6; (ii) the
dialogue ends with agreement that the selected member cannot execute the
task either; and (iii) the agents cannot reach an agreement about the selected
member executing or not the task. In the last two cases, that selected member
is removed of the local list of members that can be asked to execute the task
and the process goes back to the beginning of Step 5 if the list is not empty,
and to Step 7 otherwise.

– Step 6: The user agent informs the user about the suggestion of the system
(to reallocate the task to that selected person) and waits for confirmation
from the other member. If the other member accepts the suggestion (confirms
that they will execute the task), the user is informed and the process ends.
If the other member rejects the suggestion, that member is removed of the
local list of the members who can be asked to execute the task, the user is
informed, and the decision-making process goes to Step 5.

– Step 7: The user agent informs the user that the task can be neither post-
poned nor transferred to another member of the group. The user will have
to personally make the necessary decisions using the provided information.
The process ends.

5.5 Protocol for Task Reallocation Using Argumentation

Next, we define a protocol for argumentation-based dialogues between coopera-
tive agents for task reallocation, where the agents exchange arguments seeking
an agreement about the initial assertion (the subject of the dialogue); i.e., the
task being postponed or another person taking charge of it.

In the dialogue process, considering collaboratives agents, we assume that the
agents only accept propositions/claims for which they do not have an acceptable
argument against (i.e., the so called cautious attitude [25, 26]), and agents assert
propositions/claims which they have an acceptable argument for (i.e., the so
called thoughtful attitude [25, 26]).

– Step 1: The dialogue starts with one agent executing the move assert con-
taining the subject of the dialogue. The protocol goes to Step 2.

– Step 2: The agent receives an assert message and checks if this assertion
is acceptable to it (i.e., the agent does not have an argument against this
assertion). If the agents accept the previous assertion (making the accept
move) the protocol goes to Step 5. Otherwise, in case the assertion is not



12 Panisson et al.

acceptable, the agent executes a question move and the protocol goes to Step
3.

– Step 3: The agent receives a question message and provides the justification
to its previous assertion (i.e., the agent provides the (defeasible) proof that
allowed its deduction of that claim) using the justify move. The protocol
goes to Step 4.

– Step 4: The agent receives a justify message and checks if this new informa-
tion changes its conclusion about the acceptance of the previously questioned
assertion. In the case where the new information changes the agent’s con-
clusion (i.e., the previous assertion is, now, acceptable) the agent executes
the accept move and the protocol goes to Step 5. Otherwise, the agent either
questions something in the justification and the protocol goes to Step 3, or
it executes the justify move hence not accepting the previous assertion and
the protocol goes to Step 4.

– Step 5: The dialogue ends in one of three possible results: (i) the agent that
started the dialogue accepts the arguments of another agent, and it retracts
its initial assertion because it now agrees that the initial assertion is not
acceptable; (ii) the agents that received the initial assertion accept either
the arguments or the initial assertion directly, because they now agree that
the initial assertion is acceptable; or (iii) none of the agents can execute more
moves. In all cases the protocol goes to step 6.

– Step 6: The agent that started the dialogue closes it.

6 Example

Back to our assisting-living scenario, suppose the task of taking the elder person
to a physiotherapy session, under the responsibility of John (i.e., the task involves
the elderly person being cared for, we will call him Carlos). At a certain moment
in time the application recognises that John will not execute the task (e.g., a
work-related meeting has just been scheduled to a conflicting time). Then the
system generates an event to John’s agent and the process continues as described
below:

John’s agent queries the ontology using the operation isInstanceOf to verify if
the task to take to physiotherapy is temporally reallocatable (i.e., it is an instance
of the ReallocatableTime concept). In our case, this returns true and the agent,
following the decision-making process for task reallocation, starts a dialogue with
Carlos’s agent. Initially John’s agent uses the assert move, stating that John will
not execute the task (this assertion, following the thoughtful attitude assumed,
is possible because John’s agent has an acceptable argument which uses the
defeasible rule that if a task is temporally reallocatable the user does not need
to execute the task at that time).

Carlos’s agent receives the assert message and checks if it can accept that
John does not execute the task. Carlos’s agent has the information that Carlos
is in great pain that particular day, and has a strict rule that if Carlos is in
more pain than usual, then John needs to take Carlos to the physiotherapy



Arguing About Task Reallocation in Multi-Agent Systems 13

(i.e., the task cannot be postponted as usual). With this information, Carlos’s
agent cannot accept this assertion and executes the question move to gather the
reasons why John cannot execute the task.

John’s agent receives the question message and as the agent is committed
to defending its assertion (the content of the previous assertion is in its CS) it
executes the justify move explaining that, as the task can be transferred, John
does not need to execute the task.

Carlos’s agent receives the justify message and checks if the new information
changes its conclusion that John needs to execute the task. As this new infor-
mation does not change its conclusion, Carlos’s agent executes the justify move,
informing that John needs to execute the task because Carlos is in pain.

John’s agent receives the justify message and checks if the new information
changes its conclusion about not executing the task. As this information is strict
and cannot be defeated by other arguments, John’s agent accepts (executing the
accept move) that the task needs to be executed, hence executing also a retract
move and then closes the dialogue.

After closing the dialogue with Carlos’s agent, and concluding that the task
cannot be postponed, John’s agent, following the decision-making process for
task reallocation, tries to reallocate the task to another member of the group.

John’s agent queries the ontology about the members of the group who can
execute this particular task, using the artifact operation getInstances. The oper-
ation returns a list of all members who are adults since the take to physiotherapy
task has a relation can-be-relocated-to with the class Adult. In our example, we
will assume that the members who can execute the task are John and Jane
(John’s wife). Then John’s agent starts a dialogue with Jane’s agent suggesting
that Jane executes the task (using the assert move).

Jane’s agent receives the message but it has an, as yet, acceptable argument
for Jane not to execute the task (the information that the task can be transferred
to another time). Then, Jane’s agent executes the question move, because it
cannot accept the assertion.

John’s agent receives the question message and executes the justify move,
sending the information that Carlos is in pain and John has had an urgent
meeting just scheduled, hence the request to reallocate the task to Jane.

Jane’s agent receives the justify message, and checks if this new informa-
tion changes its conclusion about whether to execute the task. In our case, as
the inference for when Carlos is in pain is strict compared to inferences about
postponing tasks, Jane’s agent has no argument against executing the task and
accepts the argument (using the accept move).

Jane’s agent asks her to confirm if she is willing to execute the task instead
of John, and Jane confirms that she really can do that at that time. John’s
agent closes the dialogue and informs him that the task of taking Carlos to
physiotherapy has been transferred to Jane. The process ends.



14 Panisson et al.

7 Final Remarks

Argumentation-based approaches to communication in MAS provide several ad-
vantages, as demonstrated in this work. The exchange of arguments allows the
agents to obtain more information about the position of the other agents in the
dialogue, and this information can be used to make informed decisions.

In this work, we demonstrated that information obtained by agents in an
argumentation-based dialogue can be used in subsequent dialogues, leading to
outcomes that could not be achieved without such information. Another contri-
bution of this work is the use of information provided by ontologies in a decision-
making process and in an argumentation process as well, using a CArtAgO arti-
fact to facilitate the access to the ontologies. The integration of agent platforms
with ontologies enables the modularisation of knowledge, where domain specific
knowledge can be accessed from an ontology, and this information can be reused
for any application in that domain.

Furthermore, our contribution includes the definition of a decision-making
process for task reallocation which uses the outcomes of argumentation-based
dialogue in such process. We have also introduced a protocol to be used for such
argumentation-based dialogues for cooperative agents reallocate tasks.

As future work, we intend to explore the use of other argumentation-based
dialogues protocols in the decision-making process. In the development of the
application described above5, we have modularised the decision-making process,
the speech-acts effects formalisation presented in our previous work [23], the
dialogue protocol, and agents’ strategy in participating in dialogues (i.e., the
agent attitudes [25, 26]). Therefore, our approach allows for individual modules
to be replaced and its effects tested separately.

Acknowledgements

Part of the results presented in this paper were obtained through research on a
project titled “Semantic and Multi-Agent Technologies for Group Interaction”,
sponsored by Samsung Eletrônica da Amazônia Ltda. under the terms of Brazil-
ian federal law No. 8.248/91.

References

1. Amgoud, L., Maudet, N., Parsons, S.: Modeling dialogues using argumentation.
In: ICMAS. pp. 31–38. IEEE Computer Society (2000)

2. Atkinson, K., Bench-Capon, T.J.M., McBurney, P.: A dialogue game protocol for
multi-agent argument over proposals for action. Autonomous Agents and Multi-
Agent Systems 11(2), 153–171 (2005)

5 Indeed, we have implemented the application described in this paper in the course
of the “SeaTeaMS Project” (Semantic and Multi-Agent Technologies for Group In-
teraction).



Arguing About Task Reallocation in Multi-Agent Systems 15

3. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. Tech. rep.,
W3C (February 2004)

4. Bentahar, J., Alam, R., Maamar, Z.: An argumentation-based protocol for conflict
resolution. In: In KR2008 - Workshop on Knowledge Representation for Agents
and MultiAgent Systems (KRAMAS 2008) (2008)

5. Berariu, T.: An argumentation framework for bdi agents. In: Zavoral, F., Jung, J.J.,
Badica, C. (eds.) Intelligent Distributed Computing VII, Studies in Computational
Intelligence, vol. 511, pp. 343–354. Springer International Publishing (2014)

6. Black, E., Hunter, A.: A generative inquiry dialogue system. In: Durfee, E.H.,
Yokoo, M., Huhns, M.N., Shehory, O. (eds.) AAMAS. p. 41. IFAAMAS (2007)

7. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley &
Sons (2007)

8. Brewka, G.: Dynamic argument systems: A formal model of argumentation pro-
cesses based on situation calculus. Journal of Logic and Computation 11(2), 257–
282 (2001)

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77, 321–357 (1995)

10. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Ar-
gumentation in Artificial Intelligence, pp. 199–218. Springer (2009)

11. Freitas, A., Schmidt, D., Panisson, A., Meneguzzi, F., Vieira, R., Bordini, R.: Se-
mantic representations of agent plans and planning problem domains. In: Dalpiaz,
F., Dix, J., van Riemsdijk, M. (eds.) Engineering Multi-Agent Systems, Lecture
Notes in Computer Science, vol. 8758, pp. 351–366. Springer International Pub-
lishing (2014)

12. Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation seman-
tics for defeasible logic. J. Log. Comput. 14(5), 675–702 (2004)

13. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.
Semant. web 2(1), 11–21 (Jan 2011)

14. Kakas, A., Moraitis, P.: Adaptive agent negotiation via argumentation. In: Pro-
ceedings of the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems. pp. 384–391. AAMAS ’06, ACM, New York, NY, USA (2006)

15. Kaufman, M.: Local Decision-making in Multi-agent Systems. Ph.D. thesis, Oxford
University (2010)

16. Klapiscak, T., Bordini, R.H.: JASDL: a practical programming approach combin-
ing agent and semantic web technologies. In: The 6th international workshop on
Declarative Agent Languages and Technologies. vol. 5397, pp. 91–110. Springer
(2008)

17. Mascardi, V., Ancona, D., Barbieri, M., Bordini, R.H., Ricci, A.: CooL-
AgentSpeak: Endowing AgentSpeak-DL agents with plan exchange and ontology
services. Web Intelligence and Agent Systems 12(1), 83–107 (2014)

18. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: Con-
text and recent developments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.)
ArgMAS. Lecture Notes in Computer Science, vol. 4766, pp. 1–16. Springer (2006)

19. McBurney, P., Parsons, S.: Locutions for argumentation in agent interaction pro-
tocols. In: van Eijk, R.M., Huget, M.P., Dignum, F. (eds.) AC. Lecture Notes in
Computer Science, vol. 3396, pp. 209–225. Springer (2004)



16 Panisson et al.

20. Moreira, A.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented program-
ming with underlying ontological reasoning. In: Proceedings of the 3rd interna-
tional workshop on Declarative Agent Languages and Technologies. pp. 155–170.
DALT’05, Springer-Verlag, Berlin, Heidelberg (2006)

21. Nute, D.: Defeasible Prolog. Research report (University of Georgia. Artificial In-
telligence Programs), Artificial Intelligence Programs, University of Georgia (1993)

22. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and
Logic Programming. pp. 353–395. Oxford University Press (2001)

23. Panisson, A.R., Meneguzzi, F., Fagundes, M., Vieira, R., Bordini, R.H.: Formal
semantics of speech acts for argumentative dialogues. In: Proceedings of the Thir-
teenth International Conference on Autonomous Agents and Multiagent Systems.
pp. 1437–1438 (2014)

24. Panisson, A.R., Meneguzzi, F., Vieira, R., Bordini, R.H.: An Approach for
Argumentation-based Reasoning Using Defeasible Logic in Multi-Agent Program-
ming Languages. In: 11th International Workshop on Argumentation in Multiagent
Systems (2014)

25. Parsons, S., McBurney, P.: Argumentation-based dialogues for agent coordination.
group decision and negotiation. Group Decision and Negotiation (2004)

26. Parsons, S., Wooldridge, M., Amgoud, L.: An analysis of formal inter-agent dia-
logues. In: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1. pp. 394–401. AAMAS ’02, ACM, New York,
NY, USA (2002)

27. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument and Computation 1(2), 93–124 (2011)

28. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonen-
berg, L.: Argumentation-based negotiation (2004)

29. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent sys-
tems: An artifact-based perspective. Autonomous Agents and Multi-Agent Systems
23(2), 158–192 (Sep 2011)

30. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: an infrastructure for engineering com-
putational environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
3rd International Workshop “Environments for Multi-Agent Systems” (E4MAS).
pp. 102–119 (2006)

31. Sadri, F., Toni, F., Torroni, P.: Logic agents, dialogues and negotiation: An ab-
ductive approach. In: In Proceedings AISB’01 Convention. AISB (2001)

32. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Web Semant. 5(2), 51–53 (Jun 2007)


